Compact Central WENO Schemes for Multidimensional Conservation Laws
نویسندگان
چکیده
منابع مشابه
Compact Central WENO Schemes for Multidimensional Conservation Laws
We present a new third-order central scheme for approximating solutions of systems of conservation laws in one and two space dimensions. In the spirit of Godunov-type schemes, our method is based on reconstructing a piecewisepolynomial interpolant from cell-averages which is then advanced exactly in time. In the reconstruction step, we introduce a new third-order, compact, CWENO reconstruction,...
متن کاملCentral WENO schemes for hyperbolic systems of conservation laws
We present a family of high-order, essentially non-oscillatory, central schemes for approximating solutions of hyperbolic systems of conservation laws. These schemes are based on a new centered version of the Weighed Essentially Non-Oscillatory (WENO) reconstruction of point-values from cell-averages, which is then followed by an accurate approximation of the fluxes via a natural continuous ext...
متن کاملNonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws
We construct, analyze, and implement a new nonoscillatory high-resolution scheme for two-dimensional hyperbolic conservation laws. The scheme is a predictor-corrector method which consists of two steps: starting with given cell averages, we first predict pointvalues which are based on nonoscillatory piecewise-linear reconstructions from the given cell averages; at the second corrector step, we ...
متن کاملFifth Order Multi-moment WENO Schemes for Hyperbolic Conservation Laws
A general approach is given to extend WENO reconstructions to a class of numerical schemes that use different types of moments (i.e., multi-moments) simultaneously as the computational variables, such as point values and grid cell averages. The key is to re-map the multi-moment values to single moment values (e.g., cell average or point values), which can then be used to invoke known, standard ...
متن کاملFinite-volume Weno Schemes for Three-dimensional Conservation Laws
The purpose of this paper is twofold. Firstly we carry out an extension of the finite-volume WENO approach to three space dimensions and higher orders of spatial accuracy (up to eleventh order). Secondly, we propose to use three new fluxes as a building block in WENO schemes. These are the one-stage HLLC [29] and FORCE [24] fluxes and a recent multistage MUSTA flux [26]. The numerical results i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2000
ISSN: 1064-8275,1095-7197
DOI: 10.1137/s1064827599359461